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Abstract 
 
Steady flow of blood through catheterized arteries is studied by assuming the blood as a two-fluid model with the 

suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as 
a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is modeled as (i) Casson fluid and (ii) 
Herschel-Bulkley fluid. The expressions for the shear stress, velocity, flow rate, wall shear stress and flow resistance, 
obtained by Sankar and Lee (2008a, 2008b) for the two-fluid Casson model and two-fluid Herschel-Bulkley model are 
used to get the data for comparison. It is noticed that the plug flow velocity, velocity distribution and flow rate for the 
two-fluid H-B model are considerably higher than that of the two-fluid Casson model for a given set of values of the 
parameters. Further, it is found that the resistance to flow is significantly lower for the two-fluid H-B model than that of 
the two-fluid Casson model. Thus, the two-fluid H-B model is more useful than the two-fluid Casson model to analyze 
the blood flow through catheterized arteries. 
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1. Introduction  

Catheters have many applications in contemporary 
medical science, and several types of catheters are 
used in clinics for the measurement of various physio-
logically important flow quantities. The measurement 
of the flow quantities (such as arterial blood pressure, 
flow velocity and flow rate) as well as the diagnosis 
and treatment of various arterial diseases (such as X-
ray angiography, intravascular ultrasound and coro-
nary balloon angioplasty) is done through an appro-
priate catheter-tool device by inserting the device into 
an artery and positioning it in the desired part of the 
arterial network [1]. Catheters are even used to clear 
the short occlusions from the walls of a stenosed ar-
tery. The insertion of a catheter in an artery will alter 

the flow field, modify the pressure distribution and 
hence increase the flow resistance. Thus, the pressure 
or pressure gradient recorded by a transducer attached 
to the catheter will differ from that of an uncatheter-
ized artery and hence, it is essential to know the 
catheter induced error [2]. Even a very small angio-
plasty guidewire leads to a sizable increase in flow 
resistance. For an angioplasty guidewire, over the 
range of catheter radius ratio (ratio of catheter radius 
to coronary vessel radius) from 0.3 to 0.7 (which is 
currently used clinically), even for Newtonian fluid, 
the flow resistance increases by a large factor of 3-33 
for concentric configurations [3]. For smaller infusion 
catheter, the increase in flow resistance is less, al-
though still appreciable. Hence, it is meaningful to 
study the increase in flow resistance due to catheteri-
zation.  

Several theoretical and experimental investigations 
are done to analyze the blood flow through catheter-
ized arteries [1-6]. MacDonald [7] analyzed the blood 
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flow characteristics in catheterized arteries using con-
formal transformation and finite difference method. 
The effect of catheterization on various flow charac-
teristics in a curved artery was analyzed by Kara-
halios [8] and Jayaraman and Tiwari [9]. Daripa and 
Dash [1] have studied the blood flow characteristics 
in an eccentric catheterized artery using a fast algo-
rithm. In all the above investigations, blood was 
treated as a Newtonian fluid. But it is well known that 
blood, being a suspension of cells, behaves like a non-
Newtonian fluid at low shear rate ( )10 / secγ <&  and 
during its flow through narrow blood vessels of di-
ameter 0.02 - 5 mm [10-14].  

Chakravarthy et al. [15] and Misra and Pandey [16] 
have pointed out that for blood flowing through nar-
row blood vessels, there is a peripheral layer of 
plasma and a core region of suspension of all the 
erythrocytes. Hence, for a more realistic description 
of blood flow, it is appropriate to treat the blood as a 
two-fluid model consisting of a core region contain-
ing all the erythrocytes as a non-Newtonian fluid and 
the plasma in the peripheral layer as a Newtonian 
fluid [17-19]. Sankar and Lee [20, 21] have analyzed 
two-phase fluid models for blood flow through nar-
row arteries at low shear rates, by treating the fluid in 
the core region as (i) Casson model and (ii) Herschel-
Bulkley (H-B) model, respectively. In both two-fluid 
models, the fluid in the peripheral layer is treated as 
Newtonian fluid.  

 It is noticed that blood obeys Casson’s equation 
only for moderate shear rate and the Herschel-
Bulkley equation represents fairly closely what is 
occurring in blood [22]. Chaturani et al. [13] have 
mentioned that for tube diameter 0.095mm blood 
behaves like Herschel–Bulkley fluid rather than 
power law and Bingham fluids. Iida [23] reports, 
“The velocity profiles in the arterioles having diame-
ter less than 0.1mm are generally explained fairly by 
the two models. However, velocity profiles in the 
arterioles whose diameters are less than 0.065mm do 
not conform to the Casson model but can still be ex-
plained by the H–B fluid model. Moreover, the H-B 
fluid model can be reduced to the power law fluid 
model when the yield stress is zero and Bingham 
fluid model when its power law index n takes the 
value 1, so that the two-fluid power law and Bingham 
models can be studied from the two-fluid H-B model 
itself as its particular cases. Thus, the two-fluid H-B 
model is more suitable than the two-fluid Casson 
model to the studies of blood flow through catheter-

ized arteries. Hence, in this paper, we have compared 
the effect of various parameters on the flow quantities 
of the two-fluid H-B model and two-fluid Casson 
model and brought out the advantages of two-fluid H-
B model over the two-fluid Casson model for the 
flow of blood through catheterized arteries. The gov-
erning equations and the boundary conditions of both 
the two-fluid models, and the expressions obtained 
for the various flow quantities of these models by 
Sankar and Lee [20, 21] are mentioned in brief in this 
study and are used to perform a comparative study.  

 To idealize the present model to the mathematical 
modeling, the segment of the arterial wall is treated as 
rigid, neglecting the permeability of the arterial wall, 
and the catheter is assumed to be inserted co-axially 
though it is inserted eccentrically into the artery in 
some cases, depending on the usage of the catheter. 
The segment of the artery under study is assumed to 
be non-tapered and non-stenotic. Further, the flow in 
the artery is assumed to be laminar, axially symmetric, 
pulsatile and fully developed, though the flow may be 
underdeveloped, unsteady, turbulent and asymmetric 
if the catheter is inserted into an artery with consider-
able angle of tapering and severe stenosis. The maxi-
mum diameter of the narrow arteries which are con-
sidered in this study is restricted to 5 mm [14]. The 
maximum diameter of the catheters which are consid-
ered in this study is restricted to 2.6 mm [3]. The lay-
out of the paper is as follows.  

The formulation and method of solution of (i) two-
phase Casson fluid model and (ii) two-phase Herschel- 
Bulkley (H-B) fluid model are briefly given in section 
2. The variations of the flow quantities of these two-
fluid models on the yield stress, catheter radius ratio 
and peripheral layer thickness are analyzed in section 
3. The increase in the flow resistance due to catheteri-
zation for different types of catheters which are used 
in clinics is also given for both the two-phase fluid 
models and are analyzed in section 3. The results are 
summarized and the advantages of two-fluid H-B 
model over the two-fluid Casson are mentioned in the 
concluding section 4. 
 

2. Mathematical formulation 

Consider an axially symmetric, laminar, steady and 
fully developed flow of blood (assumed to be incom-
pressible) in an artery in which a catheter is intro-
duced coaxially, where the artery is modeled as a 
rigid walled circular tube of radius R . The catheter   
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Fig. 1. Geometry of the catheterized artery modeled as two-
fluid non-Newtonian model. 

 
radius is taken to be ( )1kR k < . Blood is treated as a 
two-fluid model with the suspension of all the eryth-
rocytes in the core region as a non-Newtonian fluid 
and the plasma in the peripheral region as a Newto-
nian fluid. The non-Newtonian fluid in the core re-
gion is represented by (i) Casson fluid model and (ii) 
Herschel-Bulkley fluid model. We have used the 
cylindrical polar coordinates ( ), ,r zφ , where r  
and z  denote the radial and axial coordinates and 
φ  is the azimuthal angle. The flow geometry of the 
two-fluid non-Newtonian model for blood flow 
through catheterized artery is shown in Fig. 1. 
 
2.1 Two-fluid Casson model 

2.1.1 Governing equations and boundary condi-
tions 

It can be shown that the radial velocity is negligibly 
small in magnitude and may be neglected for low 
Reynolds number flow and the pressure gradient is a 
function of z  alone. The simplified form of the 
momentum equations of the flow are  
 

( )1
C

dp d r
dz r dr

τ= −  in 1kR r R≤ ≤   (1)  

( )1
N

dp d r
dz r dr

τ= −  in 1R r R≤ ≤   (2)  

 
where p  denotes the pressure and Cτ  and Nτ  
denote the shear stress of the Casson fluid and New-
tonian fluid, respectively, and 1R  is the radius of the 
core region of the artery. The simplified form of the 
constitutive equations of the fluid in motion in the 
core region (Casson fluid) and peripheral layer (New-
tonian fluid) are given by  
 

2
1 y yC

C C
CC

u
r

τ τ
µ τ

ττ

⎛ ⎞∂ ⎜ ⎟= − +
⎜ ⎟∂ ⎝ ⎠

  (3)  

1

for 0 and 0

and

C
C

u
r

kR r R

τ
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∂
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∂
≤ ≤

 

1 20 if andC
C y

u R r R
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τ τ λ λ∂
= ≤ ≤ ≤

∂
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y yC
C C
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C
C

u
r

u
r

R r R

τ τ
µ τ

ττ

τ

λ λ

⎛ ⎞∂ ⎜ ⎟= − − +
⎜ ⎟∂ ⎝ ⎠

∂
< >

∂
≤ ≤

  (5)  

1

for 0 and 0

and

N N
N N N

u u
r r

R r R

µ τ τ∂ ∂
= − < >

∂ ∂
≤ ≤

  (6)  

 
where ,C Nu u  are the axial component of the fluid’s 
velocity in the core region and peripheral region, re-
spectively; ,C Nµ µ  are the viscosities of the Casson 
fluid and Newtonian fluid, respectively; yτ  is the 
yield stress; λ1 and λ2 are the yield planes bounding 
the plug flow region. Eqs. (1), (2) and (3)- (6) can be 
solved with the help of the following boundary condi-
tions.  
 

0 and 0 atC Nu at r kR u r R= = = =   (7)  

1and atC N C Nu u r Rτ τ= = =   (8) 
 
2.1.2 Method of solution  
Let 0p  be the absolute magnitude of the typical 

pressure gradient. Let us introduce the following non-
dimensional variables:  
 

( ) ( )2 2
0 02 , 2 ,C C C N N Nu u p R u u p Rµ µ= =   

1 1, ,r r R R R R= =  

( ) ( )0 0, 2 , 2 ,C C N Nz z R p R p Rτ τ τ τ= = =   

( )0 2y p Rθ τ=  (9)  
 
where θ is the non-dimensional yield stress. Since, the 
flow is assumed as steady, the pressure gradient can 
be written as  
 

0

dp p P
dz

= −   (10) 

 
where P is the non-dimensional steady state pressure 
gradient. Using Eqs. (9) and (10), the momentum Eqs. 
(1) and (2) reduced, respectively, to  
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( ) 1

12 ifC

dP r k r R
r dr

τ= ≤ ≤   (11)  

( ) 1

12 if 1N

dP r R r
r dr

τ= ≤ ≤   (12)  

 
Similarly, using Eqs. (9) and (10), the constitutive 

Eqs. (3)-(6) are simplified, respectively, to  
 

 

1

21

if 0 and 0 and

C
C

CC

C
C

du
dr

du k r
dr

θ θτ
ττ

τ λ

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

> < ≤ ≤

  (13) 

 

2 1

21

if 0 and 0 and

C
C

CC

C
C

du
dr

du r R
dr

θ θτ
ττ

τ λ

⎛ ⎞
⎜ ⎟= − − +
⎜ ⎟
⎝ ⎠

< > ≤ ≤

  (14) 

 1 20 if andC
C

du r
dr

τ θ λ λ= ≤ ≤ ≤   (15) 

1

for 0

and 0 and 1

N N
N

N

du du
dr dr

R r

τ

τ

= − <

> ≤ ≤
  (16) 

 
The boundary conditions (in the non-dimensional 

form) are  
 

0 at and 0 1C Nu r k u at r= = = =   (17)  

1and atC N C Nu u r Rτ τ= = =   (18)  
 

From Eqs. (13)- (16) and Fig. 1, it is clear that the 
flow in 1k r≤ ≤  is a four region one, in which the 
core region has a flat velocity profile and hence forms 
the plug flow region. For mathematical representation, 
let this plug flow region be defined by 1 2 ,rλ λ≤ ≤  
where 1 2, 1.k λ λ≤ ≤  Here, 1λ  and 2λ  are the un-
known constants to be determined. From the continu-
ity of the shear stress along the boundary of the plug 
flow region, we have 
 

1 2C Cr rλ λ
τ θ τ

= =
− = =   (19) 

 
Solving Eqs. (11)-(16), one can obtain the follow-

ing expressions for the shear stress and velocity dis-
tribution in the core region and the peripheral region.  

 
( )( )2 2

C P r rτ λ= −   (20) 

( )( )2 2
N P r rτ λ= −   (21) 

( ) ( )

( )

2 2 2

2 2

1log
2

2

C

r

k

ru r P r k
k

rr k dr
r

λ

λβ β

+ ⎡ ⎛ ⎞= − − +⎜ ⎟⎢ ⎝ ⎠⎣
⎤−

− − ⎥
⎥⎦

∫
  

when 1k r λ≤ ≤   (22)  

pu  = constant when 1 2rλ λ≤ ≤   (23) 

( ) ( )

( )
1

2 2

2 2

1

1 1 log
2

2

C

R

r

u r P r r

rR r dr
r

λ

λβ β

++ ⎡= − + +⎢⎣
⎤−

− − ⎥
⎥⎦

∫
 when  

2 1r Rλ ≤ ≤   (24)  
( ) ( )2 22 1 2 logNu P r rλ⎡ ⎤= − +⎣ ⎦ when 1 1R r≤ ≤ (25)  

 
where pu denotes the plug flow velocity, Cu+  and 

Cu++  are the fluid’s velocity in the regions 1k r λ≤ ≤  
and 2 1r Rλ ≤ ≤  respectively, 2

1 2λ λ λ=  and 2 1λ λ− =  
( )Pθ β= . The details of obtaining Eqs. (20)-(25) 
are given in Sankar and Lee [20]. By the continuity of 
the velocity distribution throughout the flow field, we 
have the condition 
 

( ) ( )1 2C p Cu r u u rλ λ+ ++= = = =   (26) 
 

Substitution of Eqs. (22) and (24) in Eq. (26) gives  
 
( ) ( )

( )

2 2 2 2
1 2 2 1

1 1 2

1 2 log

2

k k

R k

λ λ λ λ λ

β λ λ

+ − − +

+ − − +
 

1 1

2

2 2 2 2

4 0
R

k

r rdr dr
r r

λ

λ

λ λβ
⎡ ⎤− −

+ − =⎢ ⎥
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∫ ∫   (27)  

 
Using 2

1 2λ λ λ=  and ( )2 1 Pλ λ θ β− = = in Eq. 
(27), we get  

 
( ) ( )

( ) ( )( )

2 2
1 1

1 1 1 1

3 6 1 2

2 log

k R k

k

β βλ β

λ λ β λ β λ

+ − − − +

− + +
  

( ) ( )1 1

1

2 2
1 1 1 14

R

k

r r
dr dr

r r

λ

λ β

λ λ β λ λ β
β

+

⎡ ⎤+ − − +
⎢ ⎥− −
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∫ ∫   

0=  (28)  

 
Eq. (28) is solved numerically for 1λ  using 

Regula-Falsi method; the integrals are evaluated nu-
merically using Simpson’s rule. Once 1λ  is known, 

2λ  is determined by using ( )2 1 Pλ λ θ β− = = . The 
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steady flow rate Q is given by  
 

( )( ){ ( ) ( )

( )

1

32 2 2
1 2 1 2

3 3 3 3
1 1 2

8

1 1 2

4
3

k

Q u r dr

P k k

R k

λ λ λ λ λ

β λ λ

=

= − + − + − +

+ − − +

∫
  

1 1

2

2 2 2 2
2 28

R

k

r rr dr r dr
r r

λ

λ

λ λβ
⎫⎡ ⎤− − ⎪+ −⎢ ⎥⎬

⎢ ⎥⎪⎣ ⎦⎭
∫ ∫   

 (29)  
The details of obtaining the flow rate are given in 

Sankar and Lee [20]. The wall shear stress in the ar-
tery can be obtained from Eq. (21) and is given by 
 

( )2
1

1w N r
Pτ τ λ

=
= = −   (30)  

 
The resistance to flow per unit length of the artery 

is given by  
 

( )P QΛ =   (31) 
 
When 1 1,R = the present model reduces to the single-
fluid Casson model, and in such a case the expres-
sions for velocity, flow rate, wall shear stress and 
frictional resistance are in good agreement with those 
of Dash et al. [11]. 

  
2.2 Two-fluid herschel-bulkley model 

2.2.1 Governing equations and boundary condi-
tions  

The basic momentum equations in this case simpli-
fied to  
 

( )1
H

dp d r
dz r dr

τ= −  in 1kR r R≤ ≤     

( )1
N

dp d r
dz r dr

τ= −  in 1R r R≤ ≤   (32) 

 
where p  denotes the pressure and andH Nτ τ denote 
the shear stress of the Herschel-Bulkley fluid and 
Newtonian fluid, respectively. The simplified forms 
of the constitutive equation of the fluids in motion in 
the core region (Herschel-Bulkley fluid) and periph-
eral layer (Newtonian fluid) are given by  
  

1
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n yH
H H
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H
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ndu
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µ τ
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ndu
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< > ≤ ≤

 (35) 

10 0

N
N N

N
N

u
r

ufor and and R r R
r

µ τ

τ

∂
= −

∂
∂

< > ≤ ≤
∂

 (36)  

 
where ,H Nu u  are the axial component of the fluid’s 
velocity in the core region and peripheral region; 

,H Nµ µ  are the viscosities of the Herschel-Bulkley 
fluid and Newtonian fluid; yτ  is the yield stress; λ1 

and λ2 are the yield planes bounding the plug flow 
region. Eqs. (31) - (36) can be solved with the help of 
the following boundary conditions.  
 

0 0H Nu at r kR and u at r R= = = =   (37)  

1H N H Nu u and at r Rτ τ= = =   (38)  
 
2.2.2 Method of solution 
Let 0p  be the absolute magnitude of the typical 

pressure gradient. Let us introduce the following non-
dimensional variables:  

  
( ) ( )2 2

0 0 02 , 2 ,H H N N Nu u p R u u p Rµ µ= =   

1 1, , ,r r R R R R z z R= = =  

( ) ( ) ( )0 0 02 , 2 , 2H H N N yp R p R p Rτ τ τ τ θ τ= = =   
 (39)  

 
where ( ) 1

0 02
n

H p Rµ µ
−

=  is the typical viscosity 
coefficient having the dimension as that of the New-
tonian fluid’s viscosity and θ  is the non-
dimensional yield stress. Since, the flow is assumed 
as steady, the pressure gradient can be written as 
 

0

dp p P
dz

= −   (40)  

 
where P  is the non-dimensional steady state pressure 
gradient. Using Eqs. (39) and (40), the momentum 
Eqs. (31) and (32) reduced to  
 

( ) 1

12 H

dP r if k r R
r dr

τ= ≤ ≤   (41)  

( ) 1

12 1N

dP r if R r
r dr

τ= ≤ ≤   (42)  
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Similarly, using Eqs. (39) and (40), the constitutive 
Eqs. (33)-(36) are simplified to  

  

1

1

0 0

nH
H

H

H
H

du n
dr

duif and and k r
dr

θτ
τ

τ λ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
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  (43) 

2 1

1

0 0

nH
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H
H

du n
dr

duif and and r R
dr

θτ
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τ λ

⎛ ⎞
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< > ≤ ≤

  (44) 

1 20H
H

du if and r
dr

τ θ λ λ= ≤ ≤ ≤   (45) 

10 0 1

N
N

N
N

du
dr

ufor and and R r
r

τ

τ

= −

∂
< > ≤ ≤

∂

 (46) 

 
The boundary conditions (in the non-dimensional 

form) are  
 

0 0 1H Nu at r k and u at r= = = =   (47)  

1H N H Nu u and at r Rτ τ= = =   (48)  
 

From the continuity of the shear stress along the 
boundary of the plug flow region, we have 
 

1 2H Hr rλ λ
τ θ τ

= =
− = =   (49) 

 
Solving Eqs. (41)-(46) with the help of the bound-

ary conditions (47)-(49), one can get the following 
expressions for the shear stress and velocity of the 
fluids in the core region and peripheral region.  
 

( )( )2 2
H P r rτ λ= −   (50) 

( )( )2 2
N P r rτ λ= −   (51) 

( )
12 2 2 2n nr r

n
H

k k

r ru r P dr n dr
r r

λ λβ
−

+
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= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫   

when 1k r λ≤ ≤   (52)  

pu  = constant when 1 2rλ λ≤ ≤   (53) 

( ) ( ) 2 2
1 12 1 2 log( )Hu r P R Rλ++ ⎡ ⎤= − +⎣ ⎦   

1 1
12 2 2 2n nR R

n

r r

r rp dr n dr
r r

λ λβ
−⎡ ⎤⎛ ⎞ ⎛ ⎞− −

+ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  when  

2 1r Rλ ≤ ≤   (54)  

( ) ( )2 22 1 2 logNu P r rλ⎡ ⎤= − +⎣ ⎦   

when 1 1R r≤ ≤   (55) 
 
where pu denotes the plug flow velocity, Hu+  and 

Hu++  are the fluid’s velocity in the regions 1k r λ≤ ≤  
and 2 1r Rλ ≤ ≤  respectively. The details for obtain-
ing Eqs. (50) – (55) are given in Sankar and Lee [21]. 
By the continuity of the velocity distribution through-
out the flow field: 
 

( ) ( )1 2H p Hu r u u rλ λ+ ++= = = =   (56) 
 

This gives 
 

1 1
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2 2 2 2

1 12 2 2 2
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r rP dr dr
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λ

λ λ

λ λβ
− −
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∫ ∫

∫ ∫
 

( )2 2
1 11 2 log 0

2
P R Rλ⎡ ⎤− − + =⎣ ⎦   (57) 

 
Using Eqs. (27) and (29) in Eq. (36),  
  

( ) ( )1 1

1

2 2
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λ
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λ λ β λ λ β
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− −

+
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⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭
∫ ∫  

( )2 2
1 11 2 log 0

2
P R Rλ⎡ ⎤− − + =⎣ ⎦   (58) 

 
The above equation is solved numerically for 1λ  

using Regula–Falsi method; the integrals are evalu-
ated using Trapezoidal rule. Once 1λ  is known, 

2λ is determined from ( )2 1 Pλ λ θ β− = = . The 
steady flow rate Q is given by  

  
1

8
k
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  (59) 
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The details for obtaining Eq. (59) are given in 
Sankar and Lee [21]. The wall shear stress in the ar-
tery can be obtained from Eq. (51) and is given by 
 

( )2
1

1w N r
Pτ τ λ

=
= = −   (60) 

 
The flow resistance per unit length of the artery is 

given by  
 

( )P QΛ =   (61)  
 
When 1 1,R = the present model reduces to the single 
fluid model of a Herschel-Bulkley fluid, and in such a 
case the expressions for velocity, flow rate, wall shear 
stress and frictional resistance are in good agreement 
with Sankar and Hemalatha [24]. 
 

3. Results and discussion 

The objective of the present analysis is to compare 
and bring out the advantages of the two-fluid 
Herschel-Bulkley (H-B) model over the two-fluid 
Casson model. It is generally observed that the typical 
value of the power law index n of the Herschel-
Bulkley fluid for blood flow models is generally 
taken as 0.95 [24]. The value 0.1 is used for the non-
dimensional yield stress θ  of two-fluid H-B model 
and two-fluid Casson model. The range 0 – 0.6 is 
used for the catheter radius ratio k [11]. The value of 
the ratio β of the central core radius 0Rβ  to the nor-
mal artery radius 0R  in the unobstructed artery is 
taken as 0.95 [16] and the range 0.85–1.0 is used to 
study the effect of the peripheral layer thickness of 
the two-fluid models. The value of the steady state 
pressure gradient P is taken as 1 [20].  

 
3.1 Yield plane locations 

The location of a point where the shear stress is 
equal to the yield stress is called a yield point, and the 
locus of such points is called yield surface or yield 
plane. In the case of a tube flow, there is only one 
yield plane, whereas for annular flow, there are two 
yield planes r = λ1 and r = λ2 and these two yield 
planes form the boundary of the plug flow region. It is 
noted that β ( = λ2 - λ1 ) is the width of the plug flow 
region. For steady flow, the yield plane locations do 
not change during the course of motion, but they 
change with respect to the other parameters. The 
variation of the yield plane locations with the yield 
stress θ for the two-fluid H-B model and two-fluid  

 
Fig. 2. Variation of yield plane locations with yield stress for 
two-fluid H-B model and two-fluid Casson model with k = 
0.5. 
 

 
 
Fig. 3. Variation of plug flow velocity with catheter radius 
ratio for different two-fluid models with R1 = 0.95. 

 
Casson model with the catheter radius ratio k = 0.5 
and the interface location R1 = 0.95, is shown in Fig. 2. 
It is observed that the width of the plug flow region 
increases with the increase of the yield stress θ for 
both the two-fluid models. Further, it is noted that for 
any value of the yield stress, the width of the plug 
flow region is almost the same for both the two-fluid 
models. 

 
3.2 Plug flow velocity 

The variation of the plug flow region with catheter 
radius ratio k for different two-fluid models with in-
terface position R1 = 0.95 and yield stress θ = 0.1 is 
depicted in Fig. 3. The plug flow velocity for different 
two-fluid models decreases nonlinearly with the in-
crease of the catheter radius ratio k. The plug flow 
velocity decreases rapidly as the catheter radius ratio 
k increases from 0.1 to 0.4, and then it decreases 
slowly as the catheter radius ratio increases further 
from 0.4 to 0.6. For a given value of the catheter ra-
dius ratio k, the plug flow velocity is maximum for 
the two-fluid power law model and minimum for the 
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two-fluid Casson model. The plug flow velocity for 
the two-fluid H-B model is higher than that of the 
two-fluid Casson model. The plug flow velocity de-
creases with the increase of the power law index n. 
Fig. 3 shows the simultaneous effects of the non-
Newtonian nature of the fluid and the catheter radius 
ratio k on different two-fluid models for blood flow 
through catheterized arteries.  

 
3.3 Velocity distribution 

The velocity distribution for different two-fluid 
models and single-fluid models with yield stress θ = 
0.1, catheter radius ratio k = 0.5 and interface position 
R1 = 0.95, is depicted in Fig. 4. One can notice the 
flattened velocity profiles for the two-fluid models, 
which have fluids with yield stress in the core region, 
and the usual parabolic velocity profile for the two-
fluid power model, which has no yield stress. Among 
the two-fluid models, the two-fluid power law model 
has the highest velocity and the two-fluid Casson 
model has the lowest velocity. The velocities for the 
two-fluid H-B model and two-fluid Bingham model 
are lower than those of the two-fluid power law 
model and higher than those of the two-fluid Casson 
model. Also, the velocity of the two-fluid H-B model 
is marginally higher than that of the single-fluid H-B 
model, and the velocity of the two-fluid Casson 
model is significantly higher than that of the single-
fluid Casson model. The lowest velocity is obtained 
for the single-fluid Casson model. It is of interest to 
note that the plot of the single-fluid H-B model is in 
good agreement with Fig. 4 of Sankar and Hemalatha 
[24], and the plot of the single-fluid Casson model is 
in good agreement with Fig. 3 of Dash et al. [11]. Fig. 
4 depicts the effects of the non-Newtonian nature of  

 

  
Fig. 4. Velocity distribution for different fluid models with θ 
= 0.1, k = 0.5 and R1 = 0.95. 

blood on velocity distribution when blood flows 
through catheterized arteries. 
 
3.4 Flow rate  

The variation of the flow rate with interface posi-
tion R1 (parameter corresponding to the peripheral 
layer thickness) for different two-fluid models with 
catheter radius ratio k = 0.5 is sketched in Fig. 5. The 
flow rate for all the two-fluid models decreases line-
arly with the increase of the interface position R1 (as 
the peripheral layer thickness decreases). At any loca-
tion of the interface R1, the flow rate is maximum for 
the two-fluid power law model and minimum for the 
two-fluid Casson model. For a given value of the 
interface location, the flow rate for the two-fluid H-B 
model is higher than that of the two-fluid Casson 
model and lower than that of the two-fluid power law 
model. Also, the flow rate decreases marginally as the 
power law index n increases from 0.95 to 1.05. The 
flow rate of the two-fluid Casson model is signifi-
cantly lower than that of the other two-fluid models. 
The decrease in the flow rate of the two-fluid Casson 
model is much slower than that of the other models, 
when the interface location R1 increases. Fig. 5 shows 
the influence of the peripheral layer thickness on the 
different two-fluid models for the flow of blood 
through catheterized arteries. 

Fig. 6 shows the variation of the flow rate with 
yield stress for different two-fluid models with cathe-
ter radius ratio k = 0.5 and interface location R1 = 0.95. 
It is noticed that the flow rate decreases slowly (line-
arly) with the increase of the yield stress θ for the 
two-fluid H-B models and two-fluid Bingham model. 
Also, the flow rate decreases nonlinearly with the 
increase of the yield stress θ for the two-fluid Casson 
model; this decrease is quite fast when the yield stress  

 

 
 
Fig. 5. Variation of flow rate with interface location for dif-
ferent two-fluid models with k = 0.5. 
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Fig. 6. Variation of flow rate with yield stress for different 
two-fluid models with k = 0.5 and R1 = 0.95. 

 

 
 
Fig. 7. Variation of wall shear stress with catheter radius ratio 
for different two-fluid models with R1 = 0.95. 
 
θ increases from 0 to 0.05 and is almost the same 
constant when the yield stress θ increases further 
from 0.05 to 0.25. For a given value of the yield stress 
θ, the flow rates for the two-fluid H-B and Bingham 
models are considerably higher than that of the two-
fluid Casson model. Fig. 6 shows the non-Newtonian 
effects of the blood when it flows through catheter-
ized arteries.  

 
3.5 Wall shear stress 

The variation of the wall shear stress with the 
catheter radius ratio k for different two-fluid models 
with R1 = 0.95 is shown in Fig. 7. It is clear that the 
wall shear stress decreases linearly for all the two-
fluid models with the increase of the catheter radius 
ratio k. For a given value of the catheter radius ratio k, 
wall shear stress is maximum for the two-fluid power 
law model and minimum for the two-fluid Casson 
model, and there is only a marginal difference be-
tween the plots of the wall shear stress of the two-
fluid power law model and two-fluid H-B model. But,  

 
 
Fig. 8. Variation of resistance to flow with catheter radius 
ratio for different fluid models with R1 = 0.95 and θ = 0.1. 

 
the difference becomes considerable for the two-fluid 
Casson model over the other two-fluid models when 
the catheter radius ratio increases from 0.2 from 0.6. 
Fig. 7 shows the effects of the catheter on the wall 
shear stress of the different two-fluid models when 
blood flows through catheterized arteries.  

 
3.6 Resistance to flow 

Fig. 8 depicts the variation of the resistance to flow 
with catheter radius ratio k for different fluid models 
with the yield stress θ = 0.1 and the interface position 
R1 = 0.95. One can observe that for all the two-fluid 
models, the resistance to flow increases slowly as the 
catheter radius ratio k increases. It is seen that for the 
single-fluid H-B model and single-fluid Casson 
model, the resistance to flow increases slowly (line-
arly) as the catheter radius ratio k increases form 0.1 
to 0.3, and it increases rapidly (nonlinearly) as the 
catheter radius ratio k increases further from 0.3 to 0.6. 
For a given value of the catheter radius ratio k, the 
resistance to flow is maximum for the single-fluid 
Casson model and is minimum for the two-fluid 
power law model. The resistance to flow for the two-
fluid H-B models is higher than that of the two-fluid 
power law model and lower than those of the two-
fluid Casson model. It is found that the resistance to 
flow of the single-fluid Casson model and single-fluid 
H-B model is significantly higher than that of the 
two-fluid Casson model and two-fluid H-B model, 
respectively. It is of interest to note that the plot of the 
single-fluid Casson model is in good agreement with 
Fig. 12 of Dash et al. [11] and the plot of the single-
fluid H-B model is in good agreement with Fig. 10 of 
Sankar and Hemalatha [24]. Fig. 8 shows the effects  
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Fig. 9. Variation of resistance to flow with interface position 
for different two-fluid models with k = 0.5. 

 
of the catheter and the non-Newtonian behavior of 
blood on the resistance to flow for different two-fluid 
models. 

The variation of the resistance to flow with inter-
face location R1 for different two-fluid models with 
catheter radius ratio k = 0.95 is shown in Fig. 9. Note 
that the resistance to flow increases very slowly with 
the increase of the interface location R1 (with the de-
crease of the peripheral layer thickness) from 0.85 to 
0.925, and it increases rapidly (nonlinearly) as the 
interface location R1 increases from 0.925 to 1. The 
behavior of the two-fluid models in this case is the 
same as that we have observed for them in Fig. 8.  

The increase in the frictional resistance due to the 
catheterization is defined as the ratio between the 
resistance to flow of a fluid model in a catheterized 
artery for a given set of values of the parameters and 
the resistance to flow of the same fluid in the uncathe-
terized artery for the same set of values of the pa-
rameters [24]. The estimates of the increase in the 
resistance to flow with the increase of the catheter 
radius ratio k for different values of the yield stress 
θ for the two-fluid H-B model and two-fluid Casson 
model with R1 = 0.95 are given in Table 1. For the 
range 0.1 - 0.6 of the catheter radius ratio, the range 
of increase in frictional resistance for the two-fluid H-
B model is 1.05-3.31, 1.06-3.57 and 1.08-3.71 when 
the yield stress θ values are 0.1, 0.15 and 0.2, respec-
tively, and for the two-fluid Casson model, these 
increases are 1.53-6.16, 1,43-5.58 and 1.45-5.64 
when the yield stress θ values are 0.1, 0.15 and 0.2, 
respectively. It is important to note that the estimates 
of the increase in the resistance to flow values are 
considerably much smaller for the two-fluid H-B 
model than that of the two-fluid Casson model.  

Table 1. The estimates of the frictional resistance increase 
with catheter radius ratio k for different values of the yield 
stress θ for two-fluid H-B model and two-fluid Casson model 
with effects on catheterization with R1 = 0.95. 
 

Two-fluid H-B model with 
n = 0.95 Two-fluid Casson model

k 
θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.1 θ = 0.15 θ = 0.2 

0.1 1.0494 1.0634 1.0769 1.5336 1.4330 1.4503

0.2 1.1576 1.1902 1.2208 1.9739 1.8573 1.8964

0.3 1.3485 1.4082 1.4621 2.5753 2.4386 2.5067

0.4 1.6728 1.7747 1.8607 3.4255 3.2591 3.3658

0.5 2.2370 2.4082 2.5326 4.6124 4.392 4.5342

0.6 3.3049 3.5664 3.7079 6.1550 5.8200 5.6403

 
Table 2. Different types of catheters used in cardiovascular 
treatment, their sizes and the flow quantities measured using 
them. 
 

Type of catheter Catheter diame-
ter di (mm) 

Flow quantity meas-
ured 

Angioplasty catheter 
guidewire 0.356 Pressure drop 

Coronary angioplasty 
catheter 1.400 Pressure distal to 

lesion 

Guiding catheter 2.600 Pressure at coronary 
ostium 

Doppler catheter 1.000 Velocity proximal to 
lesion 

Coronary infusion cathe-
ter 0.660 Pressure drop across 

lesion 

 
Catheters play an important role in the clinical in-

vestigations, since they are used to measure different 
types of flow quantities. Some types of catheters used 
in clinics, their sizes and their usage are mentioned in 
Table 2 [24], where id is the diameter of the catheter 
and 0d  is the diameter of the artery. As a possible 
application of the present study to the medical field, 
the different types of the catheters with sizes, which 
are generally used in the medical field [21], and the 
corresponding range of estimates of the increase in 
the frictional resistance for the two-fluid and single-
fluid Casson models with θ = 0.1 and R1 = 0.95 are 
given in Table 3. It is observed that the range of esti-
mates of the increase in the resistance to flow for the 
two-fluid H-B model is significantly very small when 
compared with that of the two-fluid Casson model. 
Hence, it is strongly felt that the two-fluid H-B model 
will have more applicability than the two-fluid Cas-
son model in clinical use.  
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Table 3. Range of frictional resistance increase for different 
types of catheters for two-fluid H-B model and two-fluid 
Casson model with R1 = 0.95 and θ = 0.1. 
 

Type of  
catheter 

Range of 
catheter 

size 0id d

Two-fluid H-B 
model with  

n = 0.95 

Two-fluid 
Casson model

Guidewire 0.08-0.18 1.0135-1.0420 1.31-1.50 

Infusion 0.14-0.33 1.0289-1.1119 1.42-1.81 
Angioplasty 

catheter 0.3-0.6 1.0950-1.3484 1.74-2.56 

 
The present mathematical model can be used to 

predict the various flow quantities like pressure, pres-
sure drop and velocity, which are usually measured in 
clinics with the use of appropriate catheter devices. 
The present study can be used to predict the pressure 
in arteries of diameter 3.0 mm, which is usually 
measured in clinics with the use of angioplasty cathe-
ter guidewire of diameters 0.356 mm and 1.4 mm [25]. 
Further, our study can be used to find the theoretical 
value of the pressure at a coronary ostium, which is 
usually measured in medical labs with the help of the 
guiding catheter of diameter 2.6 mm [3]. Our theoreti-
cal model can measure the velocity in the arterioles of 
diameter 2.0 mm, which is measured in clinics with 
the use of Doppler catheter of diameter 1.0 mm [26]. 
Furthermore, the present study can also be used to 
calculate the pressure drop across a lesion in the arter-
ies of diameter 1.5 mm, which is measured in labs by 
the use of coronary infusion catheter of diameter 0.66 
mm [27]. 
 

4. Conclusions 

The steady flow of blood through catheterized ar-
teries is analyzed, assuming blood as a (i) two-fluid 
Casson model and (ii) two-fluid Herschel-Bulkley 
model. The effects of the catheterization, non-
Newtonian nature of blood and the influence of the 
peripheral layer thickness on the yield plane locations, 
velocity, wall shear stress and frictional resistance are 
analyzed for different two-fluid models. It is found 
that the width of the plug flow region increases with 
the increase of the yield stress. The plug flow velocity, 
velocity distribution and the flow rate for the two-
fluid H-B model are considerably higher than that of 
the two-fluid Casson fluid model for a given set of 
values of the parameters. Further, the resistance to 
flow is significantly very low for the two-fluid H-B 
model than that of the two-fluid Casson model.  

Since the difference between the estimates of the 
two-fluid H-B model and the two-fluid Casson model 
is substantial, one can expect a marked increase in the 
velocity and flow rate in the blood flow by modeling 
the flowing blood as the two-fluid H-B model than as 
the two-fluid Casson model. The increase in resis-
tance to flow is an important factor in the studies of 
blood rheology and is considerably low for the two-
fluid H-B model; therefore, it is believed that the use 
of the two-fluid H-B model for analyzing the blood 
flow may give data that are more reliable. By using 
the two-fluid H-B model, physicians can be more 
accurate in predicting the post-catheterization flow 
quantities. In view of the above discussion, it is con-
cluded that the two-fluid H-B model could be very 
useful for analyzing the blood flow through catheter-
ized arteries. 
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